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o The plasma edge sets boundary conditions on
the core plasma and needs to be understood

BOUT++ is a maturing code, able to simulate

an increasingly broad range of physical regimes
o ¥ > 1: Alcator C-Mod's EDA H-mode

e Linear: stability analysis
o Nonlinear: comparison to experimental measurements

v* < 1: DII-D’'s ELM-free H-mode

e BOUT++ gyro-Landau fluid code is desired to aid the
interpretation of experimental measurements

Conclusions and future work
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The “Standard Model”: Peeling-Ballooning (PB) modes

constrain the pedestal in ELMy H-mode
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@ Peeling and ballooning
modes couple at
intermediate 5 < n < 25 to
drive ELMs

o Ideal MHD instability
Experimentally, ELMs are
routinely observed when
crossing the PB threshold

Ideal MHD codes such as
ELITE* can assess stability
to PB modes

* P. B. Snyder et al. Phys. Plasmas 9 2037 (2002).
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C-Mod’s EDA H-mode is a steady-state, high-performance

regime regulated continuously by a QCM edge fluctuation

C-Mod's: EDA H-mode
H

The Enhanced D, (EDA) H-mode* exhibits:

o Excellent energy confinement
o Reduced impurity confinement
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* M. Greenwald et al. Phys. Plasmas 6 1943 (1999).
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ELITE shows that ideal PB modes are stable in EDA

H-mode; other physics needed to explain the QCM
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BOUT-+-+ can solve a set of nonideal reduced MHD

equations, including n effects important for v* > 1

Reduced MHD Equations* Non-ideal Physics ‘

5 J Include resistivity
ow +Vg - Vw = BSVH < I ) +2bg X K - Vp | After gyroviscous cancella-
ot By tion, the diamagnetic drift
OP modifies the vorticity
ot +Ve-VP =0 Using force balance and
8/\” n assuming no net rotation,
S = —V) (¢ +/®g) + —VIA Eo = (1/niZie)V 1Py

Ho
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* B. D. Hazeltine and J. D. Meiss, Plasma Confinement (Dover, Mineola, NY, 2003).
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V P was self-consistently varied to assess EDA's linear

stability with BOUT++
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BOUT++ indicates PB modes are stable at experimental

values of VP
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BOUT-++ marginal stability thresholds and growth

trends for PB modes agree with ELITE
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C-Mod'’s resistivity drives unstable modes at experimental

values of VP that may be responsible for the QCM
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Nonlinear simulations show a quasi-coherent oscillation

qualitatively similar to EDA’'s QCM
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Nonlinear simulations show a quasi-coherent oscillation

qualitatively similar to EDA’'s QCM
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The nonlinear quasi-coherent oscillation is peaked about

n ~ 16, similar to C-Mod's EDA QCM

BOUT++ predicted toroidal Nonlinear saturation occurs at
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The nonlinearly computed mode spans the separatrix and

sits in the edge E, well, similar to previous modeling results

BOUT++

P,/ 10 [kPa]

P [kPa]

Values from BOUT++
o

E, / 100 [kV/m]

E. Davis Opportunities for experimental and modeling synergy



The nonlinearly computed mode spans the separatrix and

sits in the edge E, well, similar to previous modeling results
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* A. Mazurenko et al. Phys. Rev. Lett. 89
225004 (2002).
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The pressure and potential fluctuations are out of phase, in

contrast to recent QCM measurements

BOUT-++ dp and ¢ predictions:
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The pressure and potential fluctuations are out of phase, i

contrast to recent QCM measurements

BOUT++ ép and d¢ predictions: Mirror Langmuir Probe

(MLP) Measurements*:
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The pressure and potential fluctuations are out of phase, in

contrast to recent QCM measurements

BOUT++ dp and d¢ predictions: Mirror Langmuir Probe

(MLP) Measurements*:
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= Drift wave!

*B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).
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The pressure and potential fluctuations are out of phase, in

contrast to recent QCM measurements

BOUT++ dp and d¢ predictions: Mirror Langmuir Probe
———————— (MLP) Measurements*:
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Hall term in Ohm'’s law for drift
wave-like response may help:

8AH 1 906 70 20 230 240 256
2t = ~VII® = nd HaGVipe e

. = Drift wave!
or may need 2-fluid model
*B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).

E. Davis Opportunities for experimental and modeling synergy



Gyro-Landau BOUT++ needed to interpret measurements

in v* < 1 regimes, e.g. DIlI-D's ELM-free H-mode

@ Phase Contrast Imaging (PCl)
measures [ fd/
@ Detector: 16 channel linear array
@ Large range in (f, k) space
e 10 kHz < f < 10 MHz
e2cm < k<30cm?

150000, time = 1.040

E. Davis Opportunities for experimental and modeling synergy



Gyro-Landau BOUT++ needed to interpret measurements

in v* < 1 regimes, e.g. DIlI-D's ELM-free H-mode

@ Phase Contrast Imaging (PCl)
measures [ fd/
@ Detector: 16 channel linear array
@ Large range in (f, k) space
e 10 kHz < f < 10 MHz
e2cm < k<30cm?

150000, time = 1.040
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The S(f, k) measured by PCl in DIlI-D’s ELM-free H-mode

has highly asymmetric features with well-defined vy
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The S(f, k) measured by PCl in DIlI-D’s ELM-free H-mode

has highly asymmetric features with well-defined vy
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PCl's S(f, k) structures suggest regions of strong localized

edge turbulence®, begging theoretical validation

Typical H-mode Er well
|

¥

* J. C. Rost et al. in preparation (2013), and
J. C. Rost et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).
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Conclusions and Future Work

o BOUT-++ ideal linear growth rates are in good
agreement with those from ELITE
o Both C-Mod and DIII-D are capable of

accessing v* > 1 and v* < 1 regimes
o * > 1 simulations in BOUT++

o EDA H-mode is a steady-state, high performance operational
regime in C-Mod not explained by PB theory

o Inclusion of C-Mod's resistivity drives RBMs that may explain
the QCM and the resulting particle flux

o Disagreement with MLP measurements indicates the need to
include drift wave physics

o * < 1 simulations in BOUT++

e PCI measures asymmetric turbulent spectra in DIII-D's
ELM-free H-modes

e Modeling with the gyro-Landau extension to BOUT++ will
complement empirical knowledge
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C-Mod'’s mirror Langmuir probe measurements show QCM

lives in region with positive radial electric field*

Profiles from East electrode
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*B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).
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